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Exercice 1 (Sylvester resultant). The goal of this exercise is to review some properties
of the classical Sylvester resultant.
Let A be a commutative ring and consider the polynomials{

f(x) = a0x
m + a1x

m−1 + · · ·+ am
g(x) = b0x

n + b1x
n−1 + · · ·+ bn

(1)

of positive degree with f and g in A[x]. The Sylvester matrix of f and g is defined as

Sm,n(f, g) =



a0 0 · · · 0 b0 0 0

a1 a0
... b1

. . . 0
...

. . . 0
... b0

am a0 bn−1 b1

0 am a1 bn
...

...
. . .

... 0
. . . bn−1

0 · · · 0 am 0 0 bn


.

This is a square matrix of size (m+n); its determinant is the so-called Sylvester resultant of
f(x) and g(x), denoted Resm,n(f, g), or simply Res(f, g) if there is no confusion. Observe
that by definition, we have the equality

Sm,n(f, g)T


1
x
...

xm+n−2

xm+n−1

 =



f
xf
...

xn−1f
g
xg
...

xm−1g


in A[x], where (−)T stands for the transpose matrix.
The polynomials f and g define a map of free A[x]-modules

A[x]⊕A[x]→ A[x] : (u, v) 7→ uf + vg

that induces another map of free A-modules by restriction (A[x]<d denotes the set of
polynomials of degree < d):

φ : A[x]<n ×A[x]<m → A[x]<m+n : (u, v) 7→ uf + vg.

The Sylvester matrix of f and g is nothing but the matrix of φ in canonical basis. In
particular, if A is a domain then φ is injective if and only if Res(f, g) 6= 0.
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1. Assume that A is a domain and let k = Frac(A) be its fraction field. Let f and g
be two polynomials in A[x] defined by (1) and such that a0 6= 0. Then, show that
Resm,n(f, g) 6= 0 if and only if f(x) and g(x) are relatively prime polynomials in
k[x]. In particular Resm,n(f, g) 6= 0 if and only if f and g has no common root in
the algebraic closure of k.

2. Assume that A = k is a field and that (a0, b0) 6= (0, 0). Show first that

corankSm,n(f, g) = m+ n− rankSm,n(f, g) = deg gcd(f, g).

Then, assuming that gcd(f, g) =
∏r
i=1(x− αi)mi , αi 6= αj in some extension k̄ of k,

show that a basis of the cokernel of Sm,n(f, g) is given by the columns of the matrix
V which is built by putting side by side the generalized (or confluent) Vandermonde
block matrices

Vm+n−1(α1;m1), Vm+n−1(α2;m2), . . . , Vm+n−1(αr;mr),

where

Vd(α; k) =



1 0 · · · 0
α 1 · · · 0
α2 2α · · · 0

α3 3α2 . . .
...

...
... · · · (d−1)!

(d−k−1)!α
d−k

αd dαd−1 · · · d!
(d−k)!α

d−k+1


.

(Hint: use the known fact that the determinant of a generalized Vandermonde square
matrix – take d =

∑
imi above – is equal to

∏
i<j(xi − xj)mimj ).

3. Let ∆0 be the top square block of V of maximal size
∑r

i=1mi = deg gcd(f, g) and de-
fine ∆1 similarly with a shift down by one row. Show that the generalized eigenvalues
of the pencil (∆1,∆0) are α1, . . . , αr with multiplicity m1, . . . ,mr respectively.

Exercice 2 (Geometry of the Sylvester resultant). Let k be an algebraically closed field.
Given two positive integers m,n, we consider couples of homogeneous polynomials

f(x, y) = a0x
m + a1x

m−1y + · · ·+ amy
m

g(x, y) = b0x
n + b1x

n−1y + · · ·+ bny
n

in the variables x, y with coefficients in k. Up to multiplication by nonzero constants in
k, these couples are in bijection with a product of two projective spaces, namely Pm×Pn.
Thus, f and g define an incidence variety W = V (f, g) in P1 × Pm × Pn. If π denotes the
canonical projection

π : P1 × Pm × Pn → Pm × Pn

then the image of W via π is the resultant variety V (Res(f, g)).

1. Let (p, q) by a point in Pm × Pn. Justify that the degree of the fiber of π at (p, q),
counting multiplicities, is equal to the corank of the corresponding Sylvester matrix,
i.e.

corankSm,n(p, q) = deg(π−1(p, q)).
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2. Prove that the multiplicity of the point (p, q) on the resultant variety, equivalently
the order (or valuation) of the resultant at the point (p, q), is equal to the degree of
the fiber of π above (p, q), counting multiplicities.

Exercice 3 (Hybrid-Bézout matrices). The goal of this exercise is to introduce matrices
of lower size than the Sylvester matrix but with similar properties.
Let f(x), g(x) be two polynomials of degree m,n respectively, as defined in (1), and let
α := (α1, α2) be any couple of non-negative integers such |α| := α1 +α2 ≤ min{m,n}− 1;
for simplicity, we assume that m ≤ n. One can decompose f and g as

f = xα1+1h1,1 + xα2+1h1,2,

g = yα1+1h2,1 + yα2+1h2,2,

where hi,j(x, y) are homogeneous polynomials of degree di − αj − 1, and define the poly-
nomial

sylα(f, g) := det

(
h1,1 h1,2
h2,1 h2,2

)
.

This latter polynomial is called a Sylvester form of f and g. It is of degree m+n− 2−|α|
with respect to x, y and of degree 2 with respect to the coefficients of f and g.
Now, for all k = 0, . . . ,m− 1 define the matrix

Hk =



a0 0 · · · 0 b0 0 0

a1 a0
... b1

. . . 0
...

...
...

...
. . . 0

... b0
am a0 bn−1 b1 sylα(f, g) · · · sylα(f, g)

0 am a1 bn
...

...
. . .

... 0
. . . bn−1

...
...

...
0 · · · 0 am 0 0 bn


such that: the rows of Hk are indexed by the monomial basis 1, x, . . . , xm+n−k−1, the two
blocks from the left are Sylvester-like blocks with n− k − 1 columns depending on f and
m − k − 1 columns depending on g, and the block on the right side is built by columns
with the coefficients of the k+ 1 Sylvester forms sylα(f, g) with |α| = k. The matrices Hk

are commonly called hybrid-Bézout matrices.

Show that the determinant of Hk(f, g) is equal to the resultant of f and g (up to a nonzero
multiplicative constant).
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